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1.  Introduction 

Scarring is a result of thermal or traumatic injury or sur-

gical excisions, where the skin fails to fully recover to its 

initial state [1, 2].  Under normal conditions the devel-

opment of any scar passes through several successive 

stages: from early hypertrophic [3] through to the final 

stage of a flat, pale scar, usually referred to as a mature 

scar[4-6].  This process is often assumed to take at least 

1 year [4, 7-9], but depends on a number of factors, in-

cluding patient’s age.  During the maturation process, a 

remodelling of the tissue collagen framework occurs, 

with the ratio of the collagen types changing [10-12]; the 

number of strong intermolecular cross-links increasing 

[12-17], and a rearrangement of bundles and fibre archi-

tecture.  External manifestations of scar maturation are 

expressed through changes in prominence, colour, den-

sity, and in scar surface modifications [18, 19].  These 

processes can impede the diagnosis of scar types during 

the maturation process, and complicate the choice of 

treatment and timeliness of reconstructive surgery [18, 

20, 21], which is recognised to be performed not earlier 

This paper addresses scar tissue maturation process that 

occurs stepwise, and calls for reliable classification.

The structure of collagen imaged by nonlinear optical 

microscopy (NLOM) in post-burn hypertrophic, mature 

scar, and normal skin biopsies, appeared to distinguish 

these maturation steps.  However, it was a discrimina-

tion analysis, demonstrated here, that automated and 

quantified the scar tissue maturation process.  The 

achieved scar classification accuracy was as high as 

96%.  The combination of NLOM and discrimination 

analysis is believed to be instrumental in gaining in-

sight into the scar formation, for express diagnosis of 

scar and surgery planning. 

 

 

Discriminant analysis of three tissue types. 
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than one year after the injury [4, 22, 23] due to possible 

risks connected with hypertrophic scar regrowth after the 

excision [24]. 

To our knowledge, only scarce reports are available on 

the histological objective criteria of scar maturity [25-27], 

and thus a reliable, minimally invasive, means to identify 

and classify post-burn scars is in demand.  The use of 

nonlinear optical microscopy aided by discriminate 

analysis can be of considerable value. 

NLOM relies on the use of infrared, ultra-short (~100 

femtosecond) laser pulses to excite nonlinear processes, 

such as two-photon excited fluorescence (TPEF) and 

second harmonic generation (SHG), in the focal volume.  

This results in considerable reduction of scattering, 

photobleaching and absorption by the endogenous chro-

mophores relative to that in the visible spectral range 

[28].  SHG occurs in polarisable materials with non-

centrosymmetric structures, such as helices.  Collagen 

fibres have a helical structure and a large hyperpo-

larisability [29], hence are highly visible in SHG imag-

ing [30, 31].  Elastin, melanin and other endogenous 

fluorophores produce detectable TPEF signals, emitting 

light in the visible spectral range, but little SHG signal 

due to their centrosymmetric molecular structures [32-

35].  Due to the exquisite sensitivity of the SHG process 

to collagen, SHG imaging has been used to examine col-

lagen networks of the scar tissues towards quantitative 

assessment and gaining insight into the scar formation 

process [36-38].  To this end, discriminant analysis 

represents a promising approach for extending the scar 

collagen network quantitative assessment to the classifi-

cation of scars. 

Discriminant analysis often furnishes quantitative meth-

odologies, such as face recognition [39], and is proven to 

be an excellent classification approach in biomedical ap-

plications, where large sample variations are inherent 

[40-43].  The general classification methodology in-

volves a pre-processing step, which produces feature 

vectors from raw data, such as images.  A test step em-

ploys discriminant functions to project unclassified data 

into a subspace, where an applied decision boundary 

sorts each data point or observation into a predefined 

class [44-46].  A brute-force search of the optimal pro-

jections and best features is computationally prohibitive 

even with the modern computing power, requiring tril-

lions of tests.  Instead, we used the power of a genetic 

algorithm to hunt for an optimal or near-optimal solution, 

based on the classification performance ranking. 

In this paper, we report on application of the discrimi-

nant analysis to classify the SHG images of scar and 

normal skin tissue.  A computer algorithm was trained on 

pre-classified tissue samples of normal skin, mature and 

hypertrophic scar tissues.  The trained algorithm was 

tested to successfully discriminate between these tissue 

types, and for the first time, to the best of our knowledge, 

demonstrated the heterogeneous composite scar tissue 

organisation by means of the unbiased computational 

methods. 

2.  Materials and Methods 

Excisional biopsies of 4 hypertrophic and 3 mature scars 

(7 patients) were performed within the boundaries of the 

lesions of children who were recovering from deep ther-

mal injuries and undertaking plastic and reconstructive 

surgery.  Surgical procedures were approved by the local 

Ethics Committee and informed consent was obtained 

from the legal representatives of all patients.  The scars 

were evaluated by the plastic surgeon following the 

guideline document [4] for wide post-burn hypertrophic 

scars and non-hypertrophic mature scars, information 

listed in Table 1.  Full thickness healthy skin samples 

were obtained from fragments of autografts from three 

age-matched patients undergoing post-burn plastic sur-

gery.  Biopsies were fixed in 10% neutral buffered for-

malin, dehydrated in a graded series of alcohol, embed-

ded in paraffin wax and cut into 5 µm and 23 µm 

matched serial sections for conventional light micros-

copy histological examination and NLOM respectively.  

The 5-µm paraffin slices were stained with haematoxylin 

and eosin (H&E), van Gieson’s picro-fuchsin, toluidine 

blue and Unna’s fuchselin following the conventional 

protocols.  

 

Gender Age 
Etiology 

of burns 

Duration 

after injury 

(years) 

Site 
Clinical scar 

appearance 

Morphological 

examination 

results 

M 7 Scald 3 Neck 

Wide 

Hypertrophic, 

whitish 

Mainly 

hypertrophic 

scar tissue 

F 6 Scald 3 Femoral 

Wide 

Hypertrophic, 

whitish 

Mainly 

hypertrophic 

scar tissue 

M 13 Scald 2 Elbow 

Wide 

Hypertrophic, 

reddish 

Mainly 

hypertrophic 

scar tissue 

F 7 Flame 5 Back 

Wide 

Hypertrophic, 

brownish 

Hypertrophic 

scar tissue 

F 8 Scald 3 Flank 

Mature (wide, 

flat, 

non-pigmented) 

Mainly 

mature scar 

tissue 

F 2.5 Scald 1 Thorax 
Mature (wide, 

flat, pale) 

Mainly 

mature scar 

tissue 

M 5 Scald 3 Thorax 
Mature (wide, 

flat, pale) 

Mature scar 

tissue 
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Table 1.  Scar tissue origins and clinical appearance. 

 

The stained histological preparations were examined us-

ing an upright light microscope Olympus BX51 (Olym-

pus Optical, Tokyo, Japan) and analysed without knowl-

edge of the clinical data and then cross-checked. 

The preparations destined for NLOM were left unstained.  

All samples were embedded in the mounting media and 

covered by cover slips.  A Tsunami laser (Spectra Phys-

ics, USA) was used for the NLOM imaging, wavelength 

800 nm, repetition rate 80 MHz, pulse duration 150 fs, 

250 nJ /pulse at the sample, in conjunction with a Leica 

TCM SP2 scanning confocal microscope.  Light was fo-

cused using a 40× oil-immersion objective (N.A. 1.25) 

and images recorded the resultant 400 nm wavelength 

light in transmission mode, image sizes are 375×375 µm.  

These images were split to 9, 125×125 µm images to in-

crease the amount of available data; this was found to be 

the smallest size at which structural information was not 

degraded.  For all tissue slices the microscope parame-

ters where kept constant except the detection voltage, 

which was adjusted so that each image was correctly ex-

posed. 

Image analysis was performed using Igor Pro (Wavemet-
rics, USA) and discriminant analysis used Matlab 
(Mathworks, USA). 

3.  Results and Discussion 

Representative SHG images of hypertrophic (immature) 

and mature scar tissues, as well as normal skin are shown 

in Fig. 1, top row.  These images were formed by collat-

ing several images together.  While the SHG process is 

polarisation-sensitive, in turbid biological tissue and in 

presence of the intense off-focus SHG signals, this effect 

is diminished [47].  However, to ensure immunity to po-

larisation effects, only relative image intensities were 

considered. 

 

 

Figure 1.  Representative images of a hypertrophic scar, ma-

ture scar and normal skin tissue.  Top row: SHG images; insets, 

125 µm × 125 µm sub-images used for the analysis.  Bottom 

row: Histology images of the haematoxylin-eosin stained tissue 

samples.  Scale bar, 200 µm, all images. 

 

Fig. 1 insets exemplify differences between the tissue 

types under study.  The collagen structure of hypertro-

phic scar tissue appeared much denser and well aligned 

to the skin surface than that of the normal skin tissue, 

which comprised more loosely packed thick bundles of 

collagen.  In contrast, the mature scar tissue comprised 

relatively thin, randomly orientated, collagen fibres and 

bundles and exhibited a greater density than that of the 

normal skin tissue.  Despite the distinct visual appear-

ance of these tissues, from fragment to fragment and 

from patient to patient, each scar type showed a wide 

range of appearances, making visual classification cum-

bersome, and calling for an objective, machine-based 

classification procedure.  In order to realise this proce-

dure, multiple parameters were extracted from each im-

age, and many images were used to ensure statistically 

meaningful results.  Specifically, 364, 313 and 456 im-

ages sized 125 µm × 125 µm (totalling 1133) of the ma-

ture scar, hypertrophic scar and normal skin tissues, re-

spectively, were used. 

A professional histologist verified all images to assign 

their classification type on the basis of cellular and ma-

trix features.  Composition of the fibroblast population 

was imaged (H&E staining, representative images shown 

in Fig. 1) and analysed in relation to the ultrastructure of 

the cells by means of transmission electron microscopy 

(data not shown).  The tinctorial features of the extracel-

lular matrix (Van Gieson's, Weigert's Resorcin Fuchsin 

and toluidine blue staining) were used to detect the pres-

ence, condition and distribution of collagen fibres and 

bundles, elastic fibres and acid glycosaminoglycans.  

Also, the appearance and number of the blood vessels 

and inflammatory cells were noted.  The above informa-

tion was matched with the clinical observations to esti-

mate the agreement between the tissue structure and the 

external appearance of scars, see Table 1 in supplemen-

tary information.  While accurate, this procedure re-

quired much information and several tissue preparation 

steps, emphasising the fact that a robust algorithm using 

images from unstained tissue would be of considerable 

use. 

Three image processing algorithms were employed to 

extract a total of 60 features, as shown in Fig. 2 and tabu-

lated in Table 2 in Supplementary Materials.  Compari-

son of the H&E and NLOM images of the comparably-

sized tissue sections is presented in Supplementary In-

formation section. 
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Figure 2. (a) Representative mature scar image; (b) its Fourier 

transform; line indicates the direction of the maximum order, 

circle shows the 6-µm boundary; (c) its wavelet transform; (d) 

and (e), thresholded, binarised images of (a) showing colla-

genous tissue and «voids», respectively. (f) Representation of 

the particle extraction procedure from (e).  

 

The first algorithm performed a two-dimensional (2D) 

Fourier transform of the raw images, followed by radial 

averaging and fitting to a sinusoidal function to deter-

mine the direction of the maximum order relative to the 

tissue surfaces.  The perpendicular direction was defined 

as the direction of minimum order.  The transformed data 

was subsequently averaged over an angle of 10° in both 

directions of the maximum and minimum order; their re-

spective ratio was calculated providing a measure of tis-

sue order.  The resultant data was averaged over the 

structures sized greater and smaller than a threshold 

value of 6 µm to yield two scalar classifiers.  This 

threshold size was determined empirically to provide the 

best classification.  However, this value seemed relevant 

to the tissue morphology delineating two collagenous 

structure size ranges: <6 µm pertinent to the collagen fi-

bres, >6 µm pertinent to the fibre bundles and their sepa-

ration. 

In the second algorithm, a single-level discrete 2D multi-

wavelet decomposition using four fitting parameters was 

applied to the image, yielding four output matrices that 

were analysed to find their mean, standard deviation, 

skew and entropy values.  These parameters provided 

additional information about the overall image, and the 

ordering level of at several length scales. 

In the third algorithm, images were sub-divided into two 

subsets forming a collagen-containing image, and its in-

verse comprising the tissue «voids».  These two image 

subsets were binarised and run through an image erosion 

procedure to discriminate the collagen from the back-

ground, and identify the “void” boundaries.  A particle 

analysis procedure was subsequently run to analyse dis-

tinct pieces of tissue/«voids» and find their centroids and 

boundaries.  This data was further processed to deter-

mine the average, maximum and skewness of the ana-

lysed area distributions, circularities, perimeter lengths 

and distribution of their axes with respect to the skin sur-

face, as well as the total number of particles and nearest 

neighbour distances. 

As a result of implementing these algorithms, 60 features 

were generated in total.  From these, 40 features were se-

lected that exhibited non-negligible variation between 

one or more tissue types, based on statistical distance and 

tests.  A feature selection algorithm was used to find a 

minimum size set of the features sufficed for accurate 

classification.  A block diagram of the selection system 

is shown in Fig. 3.  The developed selection algorithm 

chose features based on the classifier performance, em-

ploying a data partition cross-validation method aiming 

to select a final set of the features, which had a high like-

lihood to classify test scar/skin tissue data.  Multiple dis-

criminant analysis runs of the test data produced a set of 

discriminant functions by finding eigenvectors of the 

product of matrices describing the inter-class variance, 

and inverse of the intra-class variance.   

 

 

The data was standardised by subtracting the mean and 

dividing by the standard deviation. Data was initially 

randomly partitioned into a feature selection set, training 

set and testing set, a validation set was not required, 

since we were using a deterministic linear classifier, 

where control over the extent of training was not a con-

cern. The initial feature selection portion of data was 

used in the feature selection algorithm, where it is further 

randomly partitioned into training and test sets multiple 

times. For each of these times, the entire population of 

feature sets is tested, by training the classifier on the 

training data and testing on the test portion. The fitness 

of each feature set is based on the mean of these classifi-

cation results. 

Once a feature set was chosen based on mean classifica-

tion we obtained a measure of classification performance 

using the remaining unused partition of data. For consis-

tency, we ensured the classifier performance was a result 

of the mean performance for multiple training and tests 

of random data partitions. Then the entire process was 

repeated 10 times producing the final result. For each of 

these final results the best performance sets of feature 

showed only some slight variation. It was of interest to 

note that selecting from only the FFT and wavelets fea-

tures consistently produced a drop in performance of typ-

ically 3%. 
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Figure 3.  Flow chart showing genetic algorithm feature selec-

tion method. This algorithm is provided with its own partition 

of the data and chose features using a cross-validation classifi-

cation ranking method.  The final output, bottom right, is an 

optimally chosen feature set.  Region bottom left inside red 

dashed box, shows discriminant analysis routine for all current 

sets of features.  This was tested multiple times for different 

training and test data (validation test repeats) to create a fitness 

based selection.  This was then used to form a new set of 

features in the population repeat loop.  The final output, bottom 

right, is the optimally chosen features. 

 

These discriminant functions were used to project the 

data into a subspace, where each test data observation 

was classified based on the mahalanobis distance, a pa-

rameter based on the standard deviation of the total dis-

tribution.  Overall classification accuracy across all cate-

gories was used as a main performance fitness criterion.  

This test was performed for a population, or set, of pos-

sible randomly chosen feature combinations, and each 

solution was fitness-ranked by the algorithm.  The proc-

esses of iteratively mating and selecting from this popu-

lation of solutions allowed members of the population to 

develop into better solutions capable of the tissue type 

discrimination.  Random mutation of a small percentage 

of the population avoided the algorithm trapping in a lo-

cal minimum. 

Once a feature set was chosen, the overall performance 

was visualised by projecting the data into a new sub-

space by plotting each point of the new canonical vari-

ables into a two dimensional space (Fig. 4a).  As can be 

seen, the algorithm discriminated the tissue types into 

distinctly separate data clusters.  After about 100 itera-

tions, the algorithm performance asymptotically ap-

proached optimal performance showing no further im-

provements per additional iterations.  Fig. 4c shows the 

best solution performance for a range of selection tests, 

where limits were placed on the number of features se-

lectable with this algorithm.  The onset of the perform-

ance deterioration occurred at <15 features, while only 

23 features, instead of 40 features available, were found 

sufficient for finding the best solution.  Several observa-

tions of the final classification algorithm can be made.  

Of the 40 features extracted from the tissue images, those 

related to the overall image features obtained via Fourier 

and wavelet transformations were found to be most im-

portant for the classification procedure.   

It is important to note that the isolated collagenous tissue 

and “void” image subsets (algorithm 3) exhibited little 

correlation.  The isolated collagenous tissue and “void” 

image subsets (algorithm 3) exhibited little correlation. 

(Note that binarisation and erosion produced images that 

are not simply inverse).  The biological rationale for 

separating the images into these subsets was that they 

contained information relating to two distinct architec-

tures in the scar tissue, i.e. the collageneous structures 

and the vascular networks associated with the voids.  

 

 

 

Figure 4.  Canonical plot of normal skin, mature and hypertro-

phic scars tissue types.  (b) Plots showing the effect of correct 

classification versus a number of iterations of the genetic algo-

rithms, and (c) Plots showing the effect of correct classification 

versus a number of the features used.  (d) Correct classification 

into each group over 10 full validation runs. 

 

Fig. 4b shows the fitness level of the best solution for 

successive generations of the genetic algorithm, and 

shows the procedure to be effective at finding the opti-

mal solutions.  Initial features were selected as those 

containing the most discriminatory information quickly 

ramping up the algorithm efficiency.   

 

The features related to the tissue fragments/«voids» ori-

entation to the tissue surface (the average angle and dis-

tribution skewness) appeared to be of the greatest sig-

nificance.  Also, the nearest neighbour distances of both 

tissue and «voids» proved to be of importance.  Such 

features as the total number of tissue fragments, their av-

erage circularity, the maximum length of «voids», and 

the length distribution skewness were worthwhile con-

tributors to the final discrimination.  The degree of the 
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tissue alignment was an important factor in discrimina-

tion between different scar types, in agreement with the 

recent reports [36, 37]. 

Using the optimised set of features, the discrimination 

procedure was tested using 10 full cross-validation runs, 

with the result shown in Fig. 4d.  This procedure per-

formed a validation comparison using much of the avail-

able data comparing to priori histology-based classifica-

tion results.  It was found that the classifier was accurate 

to better than 96%, verifying the algorithms effectiveness.  

Of the 4% of the algorithms inaccuracies, most were 

found to be skin and mature scar tissue samples wrongly 

labelled as hypertrophic scars (as histologically classi-

fied).  This is important if the algorithm is to be of clini-

cal use as the classification errors were skewed to the 

side of caution. 

The initial univariate feature selection was performed, as 

follows.  The first stage of feature selection disregarded 

those features that performed poorly using statistical 

tests chosen to help making an informed decision regard-

ing the class discriminating power of each feature on its 

own merit.  These tests were conducted on a pair-wise 

basis to cover the three classes of data, the minimum p-

value for each of the three tests was used, and only val-

ues below 0.05 were accepted, indicating that this feature 

might be useful for separating, at least, two of the classes. 

After optimisation the classified tissue clusters exhibited 

a measurable distribution, as it can be seen in Fig. 4a.  At 

the macroscopic scale, scars are classified clinically by 

their visual appearance and clinical history, while at the 

microscopic scale, the cellular population and the ex-

tracellular matrix features provided an approach to dis-

tinguish different scar tissues.  However, classification of 

the scar tissue architecture at the sub-millimetre level, as 

inferred from our results, may be a valuable source of di-

agnostic information.  The reported procedure enables 

not only accurate scar tissue classification, but also quan-

tification of its key parameters.  For example, it is possi-

ble to assign a classification value to each tissue image 

fragment (termed “elementary classification cell”, ECC) 

that is large enough to contain the significant features. 

The smallest possible ECC was found to be approxi-

mately 125 µm × 125 µm in size.  The discrimination 

analysis performed on each ECC yields a value mapped 

in the canonical parameter space of “mature scar tissue”, 

“hypertrophic scar tissue”, and “skin” palette, as it was 

demonstrated earlier (c.f. Fig. 4a, with ECC equal to the 

full image size).  As a result, each ECC can be evaluated 

as x% “mature scar tissue”-akin, y% “hypertrophic scar 

tissue”-akin, and z% “skin tissue”-akin; or colour-coded 

accordingly for visualisation.  A simplified implementa-

tion of this strategy was demonstrated using the mature 

scar tissue, and detailed below. 

A 23-µm-thick mature scar tissue slice, sized approxi-

mately 1.5 mm × 1.5 mm was imaged using SHG (Fig. 

5a) and fragmented into, approximately, 200 ECCs sized 

~125 µm × 125 µm.  Each ECC was processed, using the 

pre-trained discriminant analysis algorithm discussed 

above, yielded the values that were cast on a colour pal-

ette, as scatter points (white crosses, Fig. 5c).  The hori-

zontal and vertical axes of the palette provided readings 

of how “skin”-akin and “hypertrophic scar”-akin the tis-

sue in each ECC was, and the corresponding colour was 

assigned to the ECC.  Note that each ECC was still clas-

sified as “mature scar tissue”.  Fig. 5b shows the original 

image Fig. 5a each ECC-fragment of which was col-

oured using the colour palette (Fig. 5c).  The spatial re-

gions, which the algorithm found to exhibit prevalent 

skin and hypertrophic scar tissue properties, are colour-

coded red and blue, respectively.  This algorithm re-

vealed interesting details.  The fragments of the tissue 

morphology akin to the normal skin, i.e. the recovered 

tissue, predominantly occupied the subsurface skin re-

gion, whereas the hypertrophic-like fragments were 

found in the deeper layer [48].  Interestingly, the algo-

rithm classified more damaged scar regions, as a zone of 

prevailing hypertrophic scar tissue. 

 

 

Figure 5.  (a) Mature scar tissue sample. (b) False-colour im-

age based on the discrimination procedure. (c) Discrimination 

analysis results for the different regions superimposed on a col-

our palette. 

 

Scar evolution from the onset of the healing process to 

maturity can be studied systematically using our quanti-

tative assessment.  Besides, SHG imaging aided by the 

discriminant analysis methodology seems to be adaptable 

for rapid quantitative assessment of the scar tissue matur-

ity, and also pinpointing regions of concern.   Our 

method lends itself to straightforward extension for in-

clusion of another scar tissue types, as well as to be 

adapted for diagnostics of many different connective tis-

sue lesions.  A rigorous analysis of the spatial and tem-

poral scar tissue will lead to improved understanding on 

the maturation process of scar tissue in humans. 

Discussion of the potential sources of inaccuracies is 

now in order. The original images were sub-partitioned 

into a set of smaller images and these sub-images might 

have been correlated.  Hence, it may be reasonable to 

conclude that partitioning the data such that some of 

these sub-images were included in the training and test 

sets might have been giving the classifier an undesirable 

advantage.  
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In order to test this possible source of inaccuracy, we 

modified the data partitioning algorithm to accept a sub-

grouping variable, which provided a constraint on the 

partitioning disallowing sub-images spreading across the 

feature selection, training and testing partitions.  The en-

tire selection and testing system was re-run to gauge the 

impact of this.  The resultant accuracy was slightly de-

creased, estimated as 5-6%, which can be explained us-

ing the following reasoning.  The employed image selec-

tion constraint provided effectively only ~100 data points, 

which were further broken into three sets yielding the 

smallest possible number of observations needed for a 

full cross-validated test.  It was, therefore, expected that 

the performance of a generalising test suffered by virtue 

of the minimal size of the data set alone. 

The presented methodology of the collagenous tissue 

classification based on the discrimination analysis is be-

lieved to hold promise for medical applications.  Firstly, 

accurate diagnosis of scars is deemed useful, especially 

in pediatric practices, where scar assessment over ex-

tended periods of time may not be an option due to pos-

sible face/body disfiguration consequences.  As we 

found, a tissue fragment (ECC) as small as 125 µm × 125 

µm sufficed for the reliable scar tissue classification, 

which opens an attractive opportunity to perform mini-

mally invasive needle biopsy. 

We also envisage broader-scope applications.  Among 

these, analysis of the skin cancer collagen network is be-

lieved to provide a strong base for diagnosis and surgery 

planning.  Besides, we observed profound collagen mod-

ification in chondrosarcoma biopsies (unpublished), 

which should enable useful diagnostic opportunity. 

In conclusion, we demonstrated that the application of 

nonlinear optical microscopy in combination with dis-

criminant analysis has potential for delivering fully-

automated classification of scar tissues, with the vali-

dated accuracies as high as 96%.  The tissue gross mor-

phology and the collagen structure angular alignment 

with respect to the tissue surface were found to be the 

main discrimination parameters.  Using second harmonic 

imaging and discriminant analysis we demonstrated the 

scar spatial heterogeneity at the sub-millimetre level, in 

accordance with the algorithm quantitative classifier.  

The reported methodology is adaptable to minimally in-

vasive biopsies, from that stage it will be of considerable 

value for express diagnosis of scars in humans. 
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Figure 1.  Representative images of a hypertrophic scar, mature scar and normal skin tissue.  Top 
row: SHG images; insets, 125 µm x 125 µm sub-images used for the analysis.  Bottom row: 

Histology images of the haematoxylin-eosin stained tissue samples.  Scale bar, 200 µm, all images. 
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Figure 2.  (a) Representative mature scar image (b) Fourier transform, line indicates direction of 
maximum order, circle shows 6 µm boundary.  (c) Wavelet transform (d) and (e) threshold images 
of (a) for tissue and «voids» respectively (f) representation of particle extraction procedure from 

(e).  
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Figure 3.  Flow chart showing genetic algorithm feature selection method. This algorithm is provided 
with its own partition of the data and chose features using a cross-validation classification ranking 

method.  The final output, bottom right, is an optimally chosen feature set.  Region bottom left 
inside red dashed box, shows discriminant analysis routine for all current sets of features.  This was 
tested multiple times for different training and test data (validation test repeats) to create a fitness 
based selection.  This was then used to form a new set of features in the population repeat loop. 

 The final output, bottom right, is the optimally chosen features.  
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Figure 4.  Canonical plot of normal skin, mature and hypertrophic scars tissue types.  (b) Plots 
showing the effect of correct classification versus a number of iterations of the genetic algorithms, 
and (c) Plots showing the effect of correct classification versus a number of the features used.  (d) 

Correct classification into each group over 10 full validation runs. 
Fig. 4b shows the fitness level of the best solution for successive generations of the genetic 

algorithm, and shows the procedure to be effective at finding the opti-mal solutions.  Initial features 
were selected as those containing the most discriminatory information quickly ramping up the 

algorithm efficiency.  
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Figure 5.  (a) Mature scar tissue sample. (b) False-colour image based on the discrimination 
procedure. (c) Discrimination analysis results for the different regions superimposed on a colour 

palette.  
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Discriminant analysis of three tissue types.  
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